Ученые одного из крупнейших банков создали систему моделирования и прогнозирования диагнозов

Ученые разработали систему моделирования состояния здоровья

icon 23/11/2023
icon 18:24

© Freepik Company S.L.

Freepik Company S.L.

Решение позволяет генерировать гипотезы о взаимосвязях между болезнями и предсказывать развитие состояний пациентов. 

Лаборатория по искусственному интеллекту (ИИ) Сбера разработала медицинское решение, которое моделирует состояние здоровья пациентов по данным их электронных медицинских карт. Данный подход позволил получить формальное представление медицинских профилей пациентов в виде эмбеддингов (embedding — вложение, числовой вектор признаков), полезных для множества научных и практических задач.

Это решение открывает возможности для моделирования треков дальнейшего развития состояний пациентов. Такое свойство модели проверено в задаче предсказания следующего диагноза и подтверждено высокими метриками в эксперименте на публичном датасете медицинских записей MIMIC-III (открытая база данных с информацией о пациентах, поступивших в отделения интенсивной терапии крупного медицинского центра).

Созданная модель имеет потенциал применения и в страховом скоринге. С помощью данной модели удастся получить значимый прирост в точности оценки страховых рисков относительно традиционных методов, а это новые возможности для персонализации тарифов и сокращения издержек. Сейчас модель работает с историческим данными, следующим этапом будет обучение её работе в онлайне с данными, получаемыми от клиентов для принятия решения в момент обращения.

Также в ходе исследования предложен H2D-метод (Harbinger Disease Discovery) поиска предвестников заболеваний, позволяющий автоматически генерировать гипотезы о взаимосвязях между болезнями. Так, благодаря нему удалось обнаружить сильную зависимость между группой психологических расстройств и раком молочной железы у женщин. Достоверность этой гипотезы подтверждается в смежных научных исследованиях. В результате учёные сформировали новый набор гипотез о предвестниках пяти наиболее распространённых видов онкозаболеваний. Метод H2D поможет врачебному и научному сообществу в поиске новых направлений медицинских исследований.

Научная работа опубликована в высокорейтинговом международном журнале IEEE Journal of Biomedical and Health Informatics. Текст публикации и исходный код выложены в открытый доступ.